M1.
144% or 1.44 seen
B1
$\sqrt{1.44}$ or 1.2
oe
M1
their 1.2×32
M1dep
38.4

M2.
$75 \div 50$ or $\frac{3}{2}$ or 1.5 seen or implied
or $50 \div 75$ or $\frac{2}{3}$ seen or implied
oe

$$
\begin{gathered}
(75 \div 50)^{2} \text { or }\left(\frac{3}{2}\right)^{2} \text { or } 1.5^{2} \text { or } 2.25 \text { or } \frac{9}{4} \\
\text { or }(50 \div 75)^{2} \text { or }\left(\frac{2}{3}\right)^{2} \text { or } \frac{4}{9} \\
\text { oe }
\end{gathered}
$$

6000×2.25 or 13500
or 80×6000
oe
their $13500 \div 10000$
or $80 \div 10000$
or their $13500 \div 10000 \times 80$
or $80 \times 6000 \div 10000$
or $6000 \div 10000 \times 2.25$
oe
Dependent on previous M1

108
Digits 108 seen M1M1M1M1AO

Additional Guidance

$6000 \times \frac{3}{2} \times 80$
M1M0M1
720000 implies $\frac{3}{2}$ and 6000×80 from $\left(6000 \times \frac{3}{2} \times 80\right)$

9000 implies $\frac{3}{2}$
Ignore assumptions about the shape

M3.

Alternative method 1

Volume original $=\frac{1}{3} \times \pi \times 8^{2} \times 18$
(= 384π or [1190.4, 1206.6])

Volume removed $=\frac{1}{3} \times \pi \times 2^{2} \times 4.5$
($=6 \pi$ or $[18.6,18.855])$

$$
\frac{1}{3} \times \pi \times\left(8^{2} \times 18-2^{2} \times 4.5\right) \text { is } M 2
$$

Alternative method 2

> Volume original $=\frac{1}{3} \times \pi \times 8^{2} \times 18$
> $(=384 \pi$ or $[1190.4,1206.6])$

Linear scale factor $1 / 4$ so volume scale factor $\frac{1}{64}$ so $\frac{63}{64}$
378π or [1170, 1190])

M4.
(a) $20 \div 32$ or 0.625
$32 \div 20$ or 1.6
their 0.625×24.8
$24.8 \div$ their 1.6
15.5

Alternative method

$24.8 \div 32$ or 0.775
$32 \div 24.8$ or [1.29, 1.3]
their 0.775×20
$20 \div$ their [1.29, 1.3]
(b) $\left(\frac{37}{32}\right)^{3}$ or 1.15625^{3} or $\frac{V_{1}}{37^{3}}=\frac{V_{2}}{32^{3}}$
oe
M1
[1.54, 1.55] or [154(\%), 155(\%)]
[1.54, 1.55] and [54(\%), 55(\%)] and decision
or
[154(\%), 155(\%)]
and decision
or
[1.54, 1.55] and 1.5(0) and decision

Strand (iii)
ft their [1.54, 1.55] or their [154(\%), 155(\%)]
if M1 gained
SC1 $37^{3}: 32^{3}$
Q1ft

Alternative method 1

$$
\begin{gathered}
\left(\frac{32}{37}\right)^{3} \text { or }(0.86486 \ldots)^{3} \\
\text { oe }
\end{gathered}
$$

[0.64, 0.65]
[0.64, 0.65] and [66(\%), 67(\%)]
and decision
or
[0.64, 0.65] and [0.66, 0.67]
and decision
Strand (iii)
ft their [0.64, 0.65] if M1 gained
SC1 $37^{3}: 32^{3}$
Q1ft

Alternative method 2
$32^{3} \times 1.5$ or 49152
and
37^{3} or 50653
or
32^{3} or 32768
and
$37^{3} \div 1.5$ or [33768, 33769]
oe

49152 and 37^{3} or 50653
or
[33768, 33769] and 32^{3} or 32768

49152 and 50653
and decision
or
[33768, 33 769] and 32768
and decision
Strand (iii)
ft their 49152 and their 50653
if M1 gained
or
ft their [33768, 33 769] and their 32768
if M1 gained
SC1 $37^{3}: 32^{3}$
Q1ft

Alternative method 3

$$
\begin{gathered}
\frac{37^{3}-32^{3}}{32^{3}} \text { or } \frac{50653-32768}{32768} \\
\text { oe }
\end{gathered}
$$

[0.54, 0.55] or [54(\%), 55(\%)]
[0.54, 0.55] and [54(\%), 55(\%)] and decision
or
[54(\%), 55(\%)] and decision
or
[$0.54,0.55]$ and 0.5 and decision

Strand (iii)
ft their [0.54, 0.55] or [54(\%), 55(\%)]
if M1 gained
SC1 $37^{3}: 32^{3}$

Alternative method 4
$\sqrt[3]{1.5}$ or $1.14471 \ldots$
and
37
$\overline{32}$ or 1.15625
$1.14471 \ldots$ and 1.15625
1.14471... and 1.15625 and decision

Strand (iii)
ft their 1.14471... and their 1.15625
if M1 gained
SC1 $37^{3}: 32^{3}$
Q1ft
[6]

M5.
(Linear sf $=$) 1.5 681 or 1021.5 implies B1
454×1.5^{3}

1532 (...)
Accept 1530 or 1500 with working

Alternative

Radius of larger cylinder
$=[5.7,5.71]$
B1
$\pi \times$ radius $^{2} \times 15$
[1531.5, 1532.5]

M6.
(a) (height of cylinder $=$) 14

May be seen in method or on diagram

$$
\begin{array}{r}
\frac{1}{3} \times \pi \times 6^{2} \times \text { their } 14(=168 \pi) \\
\text { oe eg }[527.5,528]
\end{array}
$$

$$
\begin{aligned}
\frac{2}{3} & \times \pi \times 6^{3}(=144 \pi) \\
& \text { oe eg [452, 452.16] }
\end{aligned}
$$

$168 \pi+144 \pi$
oe eg $312 \pi-168 \pi=144 \pi$
(b) $\quad 1500(\mathrm{~g})$

$$
(312 \pi \times) 2^{3}(=2496 \pi)
$$

oe
eg ${ }^{\frac{1}{3}} \times \pi \times 12^{2} \times$ their $28+{ }^{\frac{2}{3}} \times \pi \times 12^{3}$
or [7837.4, 7842.432]

Their $1500 \div$ their 2496π
[0.19, 0.1914]
ft their 1500 and their 28
Accept 0.2 if correct method seen
or $10 \div 15\left(=\frac{2}{3}\right)$ oe
or $\left(\frac{w}{15} \Rightarrow \frac{3}{10}\right.$ or $\left(\frac{15}{w}=\frac{10}{3}\right.$
Accept ratios e.g. $3: 10$
or $\left(\frac{w}{3}=\right) \frac{15}{10}$
$3 \times$ their 1.5
or $3 \div$ their $\frac{2}{3}$ oe
or $15 \times \frac{3}{10}$
1.5^{2} or $\left(\frac{2}{3}\right)^{2}$ seen
or $3 \times \frac{15}{10}$
M1dep
4.5
1.5^{2} and 30 seen
or $\left(\frac{2}{3}\right)^{2}$ and 30 seen
15×4.5

$$
1.5^{2} \times 30 \text { or } 30 \div\left(\frac{2}{3}\right)^{2}
$$

M8. $\frac{12}{10}(=1.2)$ or $\frac{10}{12}$
oe
May be implied from answer of 600
$500 \times$ their 1.2^{3}
oe

864
Accept [863, 864]

M9.Scale factor $\frac{18}{8}$ or $\frac{8}{18}$ seen oe
11.25 may be on diagram

B1
or $A C=5 \times 2.25(=11.25)$
or angle $B=$ angle E seen
or angle $A=$ angle D seen
Use of cosine rule to work out any angle

$$
\begin{aligned}
& 8^{2}=4^{2}+5^{2}-2 \times 4 \times 5 \times \cos C \\
& 18^{2}=9^{2}+\text { their } 11.25^{2}-2 \times 9 \times \text { their } 11.25 \times \cos C \\
& 4^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \times \cos D \\
& 9^{2}=18^{2}+\text { their } 11.25^{2}-2 \times 18 \times \text { their } 11.25 \times \cos A \\
& 5^{2}=4^{2}+8^{2}-2 \times 4 \times 8 \times \cos E
\end{aligned}
$$

$$
\text { their } 11.25^{2}=9^{2}+18^{2}-2 \times 9 \times 18 \times \cos B
$$

Correct rearranging of formula to isolate cosine

$$
\begin{aligned}
& \frac{4^{2}+5^{2}-8^{2}}{2 \times 4 \times 5} \text { or }-\frac{23}{40} \\
& \frac{9^{2}+\text { their } 11.25^{2}-18^{2}}{2 \times 9 \times \text { their } 11.25} \text { or }-\frac{23}{40} \\
& \frac{5^{2}+8^{2}-4^{2}}{2 \times 5 \times 8} \text { or } \frac{73}{80} \\
& \frac{\text { their } 11.25^{2}+18^{2}-9^{2}}{2 \times \text { their } 11.25 \times 18} \text { or } \frac{73}{80} \\
& \frac{4^{2}+8^{2}-5^{2}}{2 \times 4 \times 8} \text { or } \frac{55}{64} \\
& \frac{9^{2}+18^{2}-\text { their } 11.25^{2}}{2 \times 9 \times 18} \text { or } \frac{55}{64}
\end{aligned}
$$

Obtaining one angle

$$
\begin{aligned}
\text { eg } C & =125 .(\ldots) \text { or } 125 \\
B & =30 .(\ldots) \text { or } 31=E \\
A & =24 .(\ldots) \text { or } 24=D
\end{aligned}
$$

May be seen on diagram

Substitution into $\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& \frac{1}{2} \times \text { their } 11.25 \times 9 \times \text { sin their } 125 \\
& \frac{1}{2} \times \text { their } 11.25 \times 18 \times \text { sin their } 24
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \times 18 \times 9 \times \sin \text { their } 31 \\
& \text { oe } \\
& \frac{1}{2} \times 4 \times 5 \times \sin \text { their } 125 \\
& \frac{1}{2} \times 5 \times 8 \times \sin \text { their } 24 \\
& \frac{1}{2} \times 4 \times 8 \times \sin \text { their } 31
\end{aligned}
$$

[41, 42]

M10.

$$
\begin{array}{r}
80 \div 16(=5) \text { or } 16 \times 5 \\
16 \div 80(=0.2) \text { or } 80 \times 0.2
\end{array}
$$

$196 \times$ their 5^{2} or $\frac{x}{196}=\left(\frac{80}{16}\right)^{2}$

$$
196 \div \text { their } 0.2^{2} \text { or } \frac{196}{x}=\left(\frac{16}{80}\right)^{2}
$$

4900

Alternative 1

$$
\begin{array}{r}
80 \div 16(=5) \text { or } 16 \times 5 \\
16 \div 80(=0.2) \text { or } 80 \times 0.2
\end{array}
$$

$5000 \div$ their 5^{2} or $\frac{5000}{x}=\left(\frac{80}{16}\right)^{2}$
$5000 \times$ their 0.2^{2} or $\frac{x}{5000}=\left(\frac{16}{80}\right)^{2}$

Alternative 2

$$
\begin{array}{r}
80 \div 16(=5) \text { or } 16 \times 5 \\
16 \div 80(=0.2) \text { or } 80 \times 0.2
\end{array}
$$

their 5^{2} and $5000 \div 196$ their 0.2^{2} and $196 \div 5000$

